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Velocity convergence of free energy surfaces from single-molecule measurements
using Jarzynski’s equality
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We studied the velocity dependence of mechanical unfolding of single protein molecules with the atomic
force microscope. We showed that with enough realizations, the free energy surfaces reconstructed from
Jarzynski’s equality converge with respect to pulling velocity, in good agreement with theory. Using the 127
domain of titin as an example, we estimated the required number of realizations for a given pulling velocity,
and suggested the optimal range of velocities for single-molecule experiments. The results demonstrate that
Jarzynski’s equality is a powerful and practical tool for reconstructing free energy landscapes.
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The free energy surface for a biomolecular process, such
as unfolding of a protein or a nucleic acid, provides insight
into the biological function associated with that process. The
development of single-molecule manipulation techniques,
typically done using atomic force microscope (AFM) [1,2]
and optical tweezers [3,4], combined with the nonequilib-
rium work theory [5,6] offers an opportunity for experimen-
tally mapping the free energy surface of such molecular pro-
cesses for the first time.

These methods, however, are usually performed out of
equilibrium, and relating the results to meaningful molecular
properties has been difficult. The recently derived Jarzynski’s
equality [6,7], which relates nonequilibrium measurements
to equilibrium free energies, has shown promise for extract-
ing equilibrium information from single-molecule experi-
ments [2-4,8—10]. Jarzynski’s equality recovers equilibrium
free energies by preferentially weighting the rare smaller
work realizations in a nonequilibrium work distribution via
exponential averaging [11]. The equality holds for processes
performed arbitrarily far from equilibrium. However, the far-
ther from equilibrium a process is performed, the more real-
izations are required to ensure the dominant events of a work
distribution are sampled.

Questions remain concerning the rate of convergence of
Jarzynski’s equality as experiments are performed farther
from equilibrium. Some studies found that practical applica-
tions of Jarzynski’s equality in simulations are limited
[12,13]. On the other hand, under certain conditions or when
incorporating strategies for improving sampling efficiency
for faster convergence, Jarzynski’s equality may be advanta-
geous [14-17]. The free energy surfaces from forced protein
unfolding simulations have been shown to compare well
with experimental results [18,19]. In these simulations,
Jarzynski’s equality converged fast enough that it was useful
for relatively slow pulling velocities, comparable to those
used in single-molecule experiments. It has recently been
demonstrated that it is possible to use Jarzynski’s estimator
to determine the free energy surfaces of biomolecule unfold-
ing from nonequilibrium single-molecule experiments
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[2,9,10]. In experiments practical restrictions such as instru-
ment stability and the time a molecule can be stably attached
to the cantilever tip limit the feasibility of performing an
experiment infinitely slowly. As a result, few systems have
been successfully studied using single-molecule techniques
under equilibrium conditions, which make application of
Jarzynski’s equality particularly attractive.

Debate over the practicality of Jarzynski’s equality in de-
termining experimental free energy landscapes stems from
the large number of realizations required for single-molecule
measurements. Thus, it is important to examine the conver-
gence behavior of the Jarzynski estimator as the process
moves farther from equilibrium. Specifically, the number of
samples sufficient to determine the nonequilibrium work dis-
tribution of a particular process is related to the pulling ve-
locity. Here we report studies of unfolding a single protein
domain, via AFM, over a range of constant pulling veloci-
ties. We found that the results from Jarzynski’s estimator are
consistent with the expectations that equilibrium free energy
is independent of pulling velocity and the measurement noise
does not pose a significant problem. Jarzynski’s equality can
recover equilibrium free energy efficiently in experiments
where it would otherwise be impossible.

We used AFM to mechanically unfold the 127 domain of
human cardiac titin. A schematic illustrating the single-
molecule techniques is given in Fig. 1(a). Experiments were
performed at pulling velocities ranging from 0.02 to
5.0 um/s, using a cantilever with spring constant of 0.05
N/m. Representative force versus time curves are shown in
Fig. 1(b). The unfolding forces were measured, and distribu-
tions at each velocity are displayed in Fig. 2(a). The most
probable unfolding force as a function of pulling velocity,
determined using the fit to a Gaussian distribution, is shown
in Fig. 2(b) [20]. These data can be used to fit the phenom-
enological model based on Bell’s theory [21] or the high-
force microscopic model based on Kramers theory [22-24]
to obtain unfolding barrier height information. Here we used
nonequilibrium work theorem to analyze the results, and at-
tempt to estimate the barrier height information to compare
the results from our analysis to that from the models.

We used Jarzynski’s equality to reconstruct the free en-
ergy curve directly from experimental data. Detailed proce-
dures are described in Ref. [2]. In brief, we used the histo-
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FIG. 1. (Color online). (a) A schematic of single-molecule ma-
nipulation using AFM. A protein is anchored at one end to a gold
substrate and at the other end to a silicon nitride tip on a cantilever
spring. The protein is pulled at a constant velocity until the force on
the molecule is large enough for a single domain to rupture and
unfold. (b) Representative force-extension curves of titin 127 do-
main pulled at different velocities. (c) Force versus time trajectories
for a titin 127 domain unfolding at a pulling velocity of 1 um/s.
The curves were smoothed with a smoothing spline for display
purposes.

gram method derived from the exact formula [2,6] to
reconstruct the free energy curve G as a function of molecu-
lar end-to-end distance z. To calculate G(z), we averaged the
work from each time step 7=7/ St of duration 6T,

N T
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where n is the nth trajectory, s is the sth time step, W, ; is the
work performed up to #;, and z, is the value of z at time
ty=sot. U= %k)c2 is the energy stored in the spring, where & is
the cantilever spring constant and x is the distance the can-
tilever tip moved from its equilibrium position. The z axis is
divided into bins of width e with z" as the midpoint of the
mth bin. The process is repeated for each pulling velocity.
The calculated free energy surfaces at various pulling ve-
locities converge to within 10%, as shown in Fig. 3(a). For
comparison, the profiles of the average work done on the
system, which include dissipated work, are shown in Fig.
3(b). The average work increases with the pulling velocity,
which is evidenced in Fig. 3(b) and the non-Gaussian distri-
butions of work in Fig. 3(c). However, Jarzynski’s equality
exponentially weights these work distributions such that the
resulting free energy surfaces are independent of pulling ve-
locity, as shown in inset of Fig. 3(b). Unlike the phenomeno-
logical approach, our approach does not require assuming
explicitly the apparent stiffness of the system, which in-
cludes both the spring and the molecule. This demonstrates
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FIG. 2. (a) Histogram of rupture forces for pulling velocities v
ranging from 0.02 to 5 um/s. Solid lines are fits to Gaussian dis-
tribution. (b) The most probable rupture force as a function of v.
Error bars indicate the standard statistical error of the most probable
force as determined by fitting to a Gaussian distribution.

the feasibility of using Jarzynski’s equality to reconstruct
free energy surfaces provided that the work distribution is
properly sampled. Consistency in the surfaces reconstructed
from different velocities further verifies the use of Jarzyns-
ki’s equality for free energy calculations from single-
molecule manipulation experiments.

For pulling at near-equilibrium velocities, thermal fluctua-
tions will have equal probability of lowering and raising the
forces, with a very narrow distribution. In other words, the
Jarzynski equation reduces to the thermodynamic statement
that “free energy equals reversible work” in the low velocity
limit. For example, at the speed of 0.01 um/s, the Jarzynski
and thermodynamic work estimates are within 10 kcal/mol
for the free energy. Since most of the experiments were done
far from equilibrium, there was significant dissipation during
each process. Therefore, the work done on the system will be
on average larger than the free energy difference. This is
confirmed in Fig. 3(c), which shows the higher the pulling
velocity, the more work, and therefore, the higher the force is
required to pull the molecule over the transition state. How-
ever, using Jarzynski’s equality, we were able to recover the
equilibrium information. The reconstruction procedure can
be verified by comparing Jarzynski-derived results from re-
sults generated at low pulling velocities. In this limit, the free
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FIG. 3. (Color online). (a) Free energy surfaces for unfolding of
a single titin 127 domain at various pulling velocities. (b) Average
work (W) performed for each pulling velocity v (in um/s) and the
free energy G reconstructed from Jarzynski’s equality. Solid lines:
G determined from Jarzynski’s equality. Dashed lines: (W) calcu-
lated by weighting each trajectory equally. Inset: G and (W) at 17
nm as a function of v. Error bars are statistical uncertainties calcu-
lated using the bootstrap method. Dashed line represents the mean
of free energies (G)=100 kcal/mol from all velocities. Shaded re-
gion indicates 10% uncertainty in G. (c) Distributions of W at 17
nm as a function of v. Solid lines are smoothing spline fits to each
distribution, which are non-Gaussian.

energy as a function of extension is simply the integral of the
reversible work. Our curves obey this limit, which implies
the reconstruction procedure is correct.

To investigate the convergence of free energies G for dif-
ferent pulling velocities, we plot the estimated G as a func-

PHYSICAL REVIEW E 79, 041912 (2009)

Velocity
o
3

-
o
o

2.00

o i
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, g

5.00

10 100 1000
N

— T

/

—_

w1

o
1

u—y

o

o
1

\

Free Energy (kcal/mol) <

4
\\\

N
8
1\“\

N 300

< 10 15

5
Extension (nm)

FIG. 4. (Color online). (a) The convergence of G with respect to
the number of realizations N for different pulling velocities v. Solid
circles represents N, the estimated number of realizations required
for the free energy to converge to within 10% of the averaged free
energy (AG), which is represented by solid lines. The labels on the
Y axis show the v for each curve. Due to hydrodynamic drag, the
N, for 5.0 um/s data was not determined because the data contain
systematic error that are not included in the error bars, which in-
clude only statistical error. Solid curve is an empirical equation
N.=1+20(e'*?0—1), where vy=1 wm/s. The parameters were
determined by least square fit to the estimated N, with the constraint
N=1 when v—0. (b) The reconstructed free energy surfaces as a
function of N at v=1.0 um/s.

tion of number of realizations. Since the experimental data
consist of both statistical and systematic errors such as in-
strument drift and uncertainty in cantilever spring constant,
we estimated the error in averaged AG to be at least 10%.
The estimated number of realizations required for converg-
ing to within 10% of the averaged final value for each ve-
locity is shown in Fig. 4. For a sufficiently slow pulling
velocity such as 0.1 um/s, fewer than 50 realizations are
required. For common pulling velocities used in AFM ex-
periments, e.g., 1.0 um/s, greater than 200 realizations are
required to ensure proper sampling of the work distributions
at the low values, which dominate the resulting values of the
free energies.

We found that the number of pulling trajectories required
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to sample the work distribution properly to obtain an accu-
rate free energy is reasonable. In the lower pulling velocity
regime, the number of realizations required for velocities
such as 0.02 um/s is small. However, they are difficult to
obtain experimentally because of instrument drift, which in-
troduces systematic errors that may significantly affect the
Jarzynski’s average. The high-velocity experiments require
more trajectories, and the extra time associated with each
realization and the computing time for integration grows rap-
idly with pulling velocity. In addition, hydrodynamic drag
may affect the results at higher pulling velocities [25]. Thus
we concluded that 0.2—1.0 um/s is the optimal range of
pulling velocity. The number of realizations required to ob-
tain an accurate estimate of free energy is reasonable, and the
systematic errors are kept at a minimum. Figure 4(b) shows
the convergence of the free energy surface with increased
sampling at a pulling velocity of 1.0 um/s. The estimated
profiles resemble the final surface within 100 trajectories,
and converge within 10% after 200 realizations.

In conclusion, we study the free energy reconstruction
using Jarzynski’s equality under different pulling velocities
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and found that with enough realizations, the free energy sur-
face does not depend on the pulling velocity. Using the un-
folding of the titin 127 domain as a demonstration, for a
typical puling velocity of 0.3 um/s, fewer than 100 trajec-
tories are required for convergence of the free energy sur-
face. The convergence with respect to velocity validates the
application of Jarzynski’s equality for reconstructing biomo-
lecular free energy landscapes. The method allows us to ob-
tain the folding landscape in the region not probed by chemi-
cal denaturant studies, i.e., from the relaxed unfolded state to
the extended unfolded state, where the proteins are likely to
be when first synthesized in vivo. The method is also useful
for studying protein and nucleic acid folding and transloca-
tion as well as receptor-ligand binding free energy land-
scapes [26-29], where quantitative information of free en-
ergy may help us to understand the fundamentals of
biological interactions.
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